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Abstract: Regardless its small territory, Bulgaria has over 20 different climatic regions, so 
specifying the temperature and precipitation climate normals for the whole territory of the 
country, including the areas without meteorological monitoring, is an important task. For 
this purpose, monthly temperature and precipitation normals (1961-1990) for 158 synoptic 
and climatological stations, and 220 precipitation stations of the meteorological network 
of the National Institute of Meteorology and Hydrology have been calculated based on 
thoroughly analyzed archive data. The advanced tools, embedded in ArcGIS Pro 2.4, have 
been used to elaborate accurate maps of temperature and precipitation climate normals. 
Some topographic and other climate-related factors that play an essential role in the 
temperature and precipitation modeling have been explored.
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1. INTRODUCTION

In the light of the current climate change, it is relevant to specify the climate normals 
about the main meteorological elements, especially about temperature and precipitation, 
for the whole territory of the country, including the areas without meteorological 
monitoring. The 30-year period 1961-1990 is the most recent standard reference period 
as defined by the World Meteorological Organization.

The local and regional temperature and precipitation regimes across the territory 
of Bulgaria are highly influenced by altitude, topography, the proximity to large water 
bodies (the Black Sea and the Aegean Sea), and the prevailing atmospheric circulation. 
The climate of the country represents a transition between two main climate types 
(Moderate Continental and Mediterranean), in which the intra-annual temperature and 
precipitation regimes are very different. Northern and Southern Bulgaria are naturally 
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separated by the Balkan Mountains, which determines their climatic peculiarities. Western 
Bulgaria is dominated by mountains of various height, shape, size, and orientation. 
Eastern Bulgaria is relatively flat and borders the Black Sea that has a decisive impact 
on the local climate. Northern Bulgaria is also rather flat, while the southern areas of 
the country are more mountainous. The zonal orientation of the Balkan Mountains acts 
as a natural barrier to the invasion of cold air masses towards the south. This mountain 
range, along with Rila-Rhodope mountain massif are also a barrier to the penetration of 
southern warm air masses, which are forced to rise over them. (Sabev&Stanev, 1959).

The present work aims to demonstrate some advanced interpolation techniques in 
the elaboration of accurate maps of the temperature and precipitation climate normals 
for the territory of Bulgaria, as well as to explore the topographic and other climate-
related factors that play an essential role in the temperature and precipitation modeling.

2. DATA AND METHODS  

Monthly precipitation and temperature normals (1961-1990), calculated for 158 synoptic 
and climatological stations, and 220 precipitation stations of the meteorological network 
of the National Institute of Meteorology and Hydrology are used in the study (Figure 1). 

Fig. 1. Hypsometric map of Bulgaria and spatial distribution of the meteorological stations 
used in the survey: synoptic (red squares), climatological (blue triangles), and precipitation 

(white circles)

Despite its small territory, Bulgaria has over 20 different climatic regions, so a 
dense meteorological network, especially for precipitation monitoring, is needed. In 
the non-mountainous areas, the spatial distribution of weather stations corresponds to 
the topographic peculiarities, but on a higher altitude, the monitoring network is sparse, 
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therefore requires the use of advanced interpolation methods to reduce the modeling 
uncertainty. Also, in the period after 1961, some stations have been moved, but the new 
data have been added to the previous dataset, supposing that the climatology of the two 
locations does not differ very much. For this reason, all archive data, including metadata 
and other information, were thoroughly examined for gaps and errors, and the samples 
were tested carefully for outliers and spatiotemporal inconsistency. Data quality control 
was carried out using R software ClimPACT2 (Alexander et al., 2013) and ‘spacetime’ 
R package (Pebesma, 2012). All calculated monthly normals were compared with those 
from the reference books, obtained for other periods. 

The mapping process comprises the following steps: 1) exploratory regression 
analysis to select the adequate MLR (Multiple Linear Regression) models, 2) regression 
kriging interpolation to make the maps and 3) cross-validation. The described steps are 
performed by using ArcGIS Pro 2.4 tools, so the explanation presented below is based 
on the ESRI website information (Environmental Systems Research Institute, 2019) 
as well as on some ESRI researchers’ articles. The detailed mathematical explanation 
is avoided because a) the spatial statistics tools used for regression analysis are well 
documented and accessed in a standard fashion and b) the used tools are, practically 
automated, only require the tuning of a few boundary values but not the user-defined 
choice of statistical tests or variogram parameters.

2.1. Exploratory regression analysis

MLR is a statistical technique that models the linear relationships between the dependent 
variable (predictant) and the explanatory variables (predictors) given by the well-known 
equations:

Yi = β0 + ∑βjXij + ui = xi
Tβ + u  and         y = Xβ + u,  

where y is the dependent variable vector; X is the matrix of the explanatory variables; β 
is the vector of regression coefficients; u is the vector of residuals.

The Exploratory Regression is a data mining tool that seeks for possible combinations 
of explanatory variables that satisfy all of the necessary Ordinary Least Squares 
(OLS) diagnostics under the user-defined criteria about Adjusted R Squared (AdjR2) 
minimum values, model coefficients p-values, Variance Inflation Factor (VIF) values, 
Jarque-Bera p-values, and spatial autocorrelation p-values (Rosenshein et al., 2011). 
The Adjusted R Squared value summarizes the explanatory power of the regression 
model. The Variance Inflation Factor value, computed for each explanatory variable, 
is a measure of redundancy and points to the variables that may be removed without 
losing the model power. The Jarque-Bera statistic indicates whether the model residuals 
are normally distributed, which is a necessary condition for an adequately specified 
model. Statistically significant spatial autocorrelation in the model residuals that can be 
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assessed by Spatial Autocorrelation (Moran’s I) tool is linked to the missing of important 
explanatory variables. 

2.2. EBK Regression Prediction

EBK Regression Prediction is a geostatistical interpolation method that combines 
Empirical Bayesian Kriging (EBK) with regression analysis (Krivoruchko&Gribov, 
2019). In the regression models, the explanatory variables often are correlated with 
each other. The problem of multicollinearity is solved through the transformation of 
the primary explanatory variables, imperatively in raster format, into their principal 
components before building the regression model.

EBK Regression Prediction deals with the locally and independently calculated 
models, dividing the input data into overlapping subsets of a given size that allows the 
accurate modeling of the spatial changes of the relationships between the explanatory 
variables and the dependent variable. 

The Matérn class of variogram functions is basic for EBK Regression Prediction: 

 

where ϴs ≥ 0, ϴr ≥ 0, ϴk ≥ 0, Ωϴk
 satisfies the constraint γ(ϴr) = 0.95ϴs for any ϴk; Γ(.) 

is the Gama function; Kϴk (.) is the Bessel function of the second kind and order ϴk; 
‖h‖ is the Euclidean length of the lag vector h. The smoothness varies with ν ϴk, and 
the most commonly used parametric variogram models of this class are the Gaussian 
(νϴk = ∞), Whittle (νϴk = 1) and exponential (νϴk = 0.5). Because of its flexibility, this 
model gives the most accurate predictions, but it requires the estimation of an additional 
parameter ϴk and much longer calculation time.

The semivariogram parameters in EBK are estimated using restricted maximum 
likelihood (Zimmerman, 1991). For each subset, at first, a semivariogram is determined 
from the local data; new data is simulated at each location in the subset, using this 
semivariogram as a model, and after that, a new semivariogram is estimated from the 
simulated data. This process creates a vast number of semivariograms for each subset 
(Figure 2, left). EBK automates the most challenging aspects of building a valid kriging 
model by accounting for the error introduced by estimating the underlying semivariogram 
and avoiding the manual adjustment of parameters (Krivoruchko, 2012).

The cross-validation process in ArcGIS Geostatistical Analyst is based on the 
consecutive exclusion of data-points that aims to compare the predicted values to the 
observed values over the whole sample. The cross-validation result (Figure 2, right) 
comprises the following useful statistics: Mean Error (ME) is the averaged difference 
between the measured and the predicted values; Root Mean Square Error (RMSE) 
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indicates how closely the model predicts the measured values; Average Standard Error 
(ASE) is the average value of the prediction standard errors; Mean Standardized Error 
(MSE) is the average value of the standardized errors. The average Continuous Ranked 
Probability Score (CRPS) of all points measures the deviation from the predictive 
cumulative distribution function to each observed data value. This value should be as 
small as possible. This diagnostic has advantages over other cross-validation diagnostics 
because it compares the data to a full distribution rather than to single-point predictions.

Fig. 2. Screenshots of EBK Regression Prediction steps: model configuration (left) and cross-
validation results (right)

2.3. Topography parameters as explanatory variables 

Terrain characteristics, as a function of the elevation variability, can be computed from 
a Digital Elevation Model (DEM). The slope is the rate of change of elevation in the 
direction of the steepest descent, whereas the first-order partial derivatives – N-S slope 
and E-W slope – are the slopes in the North-South and East-West directions, respectively. 
The elevation’s second-order partial derivatives such as profile and tangential curvatures 
that identify concavity and convexity in the direction of the slope or perpendicular to the 
slope are often used to characterize locally convex and concave shapes (Hofierka et al., 
2009; Neteler&Mitasova, 2013). 

The slope and aspect modulate the incoming solar radiation flux, and so affect the 
microclimate, but the topography-dependent representation of surface temperature 
in many climate studies determines the elevation as more important than surface 
shape. The precipitation is best described by a model that permits spatially-varying 
elevation lapse rates and secondary aspect effects related to prevailing wind directions 
(Hutchinson&Gallant, 2000). As established in the study of Ranhao et al. (2008), the 
commonly used topographic variables (altitude, slope, aspect, longitude, and latitude) 
by themselves or their linear combinations cannot explain the precipitation patterns 
appropriately, especially in mountainous areas. In Oettli&Camberlin (2005), the 
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topography was described by quantitative estimates of slopes, the mean and standard 
deviation of elevation, east-west or north-south exposures, valley/ridge patterns, etc. 
The authors state that using at most four predictors, between 53 and 89% of the spatial 
variance of the monthly rainfall fields is explained. The AURELHY (Analyse Utilisant 
le Relief pour les Bésoins de l’Hydrométéorologie) method has been developed to 
estimate monthly and annual climatology in France, taking into account the effects of 
relief trough a principal component (PC) analysis of the elevation differences between a 
large number of neighboring grid points in both latitudinal and longitudinal directions. 
The first few PCs indicate peaks and valleys, east-west slopes, north-south slopes, and 
saddles. Additional PCs account for finer relief structures (Bénichou&Breton, 1989; 
Canellas et al., 2014). In recent years, the potential to use the AURELHY principal 
components in temperature and precipitation interpolation for the territory of Greece 
has been investigated, one must read Mamara et al. (2017) and Gofa et al. (2019). 

a b

c d

Fig. 3. First-order (a/ and b/) and second-order (c/ and d/) partial derivatives of the digital 
elevation surface model AW3D30 with an example of Sofia Valley (a flat urban area and a part 
of the northern slopes of Vitosha Mountain); a/ N-S slopes, b/ E-W slopes; c/ profile curvature; 

d/ tangential curvature

The embedded r.slope.aspect tool in GRASS 7.6 (GRASS homepage, 2019) is used in 
the current survey to produce the exploratory topographic variables in raster format from 
the digital model AW3D30 of the Japan Aerospace Exploration Agency (JAXA). This 
free of charge global digital surface model (DSM) dataset with a horizontal resolution 
of approximately 30-meter mesh (1 arcsec) has been built on images acquired by the 
Advanced Land Observing Satellite “DAICHI” (ALOS). The dataset is published based 
on the DSM data (5-meter mesh version) of the “World 3D Topographic Data”, which 
is the most precise global-scale elevation data at this time, and its elevation precision 
is also at a world-leading level as a 30-meter mesh version (JAXA EORC homepage, 
2019).
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2.4. Climate-related factors as explanatory variables

Continentality is a complex climate characteristic measuring the influence of large 
water bodies on the regional climate that can improve the geographic sensitiveness 
of the interpolation. The continentality has been assigned particular importance in the 
characterization of areas with the so-called transitional climate combining continental 
and oceanic impacts (Szymanowski et al., 2017). In the study of Hogewind&Bissolli 
(2011), in which is proposed a method of spatial interpolation of monthly temperature 
data in WMO Region VI (Europe and Middle East) for preparing operational climate 
monitoring maps, the expression of continentality index k by Hogewind (2010) is 
redefined:

 

where latitude φ is the latitude in decimal degrees; annual amplitude (°C) is calculated 
by the difference of the long-term means (1961-1990) of the maximum temperature in 
summer (from June to August) and that of the minimum temperature in winter (from 
December to February). This continentality index is classified into four classes: highly 
maritime (between 0 and 25), maritime (from 26 to 50), continental (from 51 to 75), and 
highly continental (from 76 to 100). The calculated values for the territory of Bulgaria 
fall in the range of about 35 to 55 (Figure 4, left). 

Aridity is a long-term hydrologic and climatic condition, significant in the context 
of global climate change, which is mainly the result of large-scale circulation patterns 
and regional topography (Maliva&Missimer, 2012). In addition to the relevant climate 
classifications, the aridity indices allow verifying regional climate characteristics in the 
presence of climate variations. In the present survey, the De Martonne aridity index 
(De Martonne, 1926), which is based on the annual precipitation and annual mean 
temperature data, is selected as an explanatory variable in the modeling of precipitation 
normals: 

 

where P and T are the long-term averages of the annual precipitation sum and annual 
mean temperature for the period 1961-1990. Values between 20 and 24 correspond to 
the Mediterranean climate type. For the territory of Bulgaria, De Martonne aridity index 
values vary from about 20 to over 130 (Figure 4, right).
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Fig. 4. Scatter plot of the continentality index k (left) and the aridity index I (right) vs. altitude.

High-resolution rasters for the chosen climate-related explanatory variables have 
been obtained by the EBK Regression Prediction method using the digital model 
AW3D30 as an elevation data source (Figure 5).

Fig. 5. Spatial distribution of the continentality index k (left) and the aridity index I (right) for 
the territory of Bulgaria

3. SPATIAL INTERPOLATION OF TEMPERATURE NORMALS 
(1961-1990)  

The results of exploratory regression analysis and EBKR modeling of temperature 
standard normals are summarized in Figure 6 and Table 1, where ALT_DEM is the 
altitude derived from the digital surface model; LONG and LAT are longitudinal 
and latitudinal coordinates; EW_SLOPE, NS_SLOPE, TANGENT, and PROFILE 
correspond to the described in subsection 2.2.3 topography parameters; CONT_INDEX 
is the continentality index by Hogewind (2010), as appears in Hogewind &Bissolli 
(2011). The selected constraints for OLS diagnostics are the following – 50% for 
AdjR2 values; 7.5 for VIF values; 0.05 for p-values of model coefficients, spatial 
autocorrelation, and Jarque-Bera test. 

The own explanatory power of the chosen predictors for temperature modeling vary 
of about 0% for secondary topographic parameters to 93.4% for altitude. Latitude and 
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directional slopes have a weak contribution to some seasons only. The continentality 
index has a stronger effect in the warm half-year (up to 79.8% in May). 

Fig. 6. Left – explanatory power of the chosen predictors for temperature modeling; right – 
comparison between the regression model with the highest AdjR2 value (BEST_PERFORM) and 

this one, based only on 3D coordinate data.

The regression models with the highest AdjR2 values (from 93.7% for January 
to 98% for June) include one or two supplementary predictors besides the longitude, 
latitude, and altitude, which improves the explanatory power with 0.2-3.2%. RMSEs 
vary from 0.46 °C in March to 0.63 °C in September. According to the CRPS values 
after the cross-validation procedure, smaller deviations from the predictive cumulative 
distribution functions are obtained for the first six months. The tangential curvature 
modulates the effect of continentality in the interpolation of monthly temperature normals 
for the second half-year except November, as well as of annual average temperature. 
The profile curvature takes part in the temperature modeling for April only.

Table 1. Summary information about the structure and cross-validation result of the regression 
models for temperature with the highest AdjR2
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Inclusion of continentality index as a predictor has a positive effect on the spatial 
distribution of prediction standard error – between 82 and almost 100% of the values, 
sampled on a 30-arcsec grid, don’t exceed 0.6 °C for the different months. Moreover, 
the standard error is quite lower in the large mountainous areas in comparison with 
the regression model built only on topography predictors, as seen in Figure 7 by the 
example for annual temperature normal. 

Fig. 7. Prediction standard error maps of annual temperature: regression model that includes 
the continentality index as a predictor (left); regression model based only on topography 

predictors (right).

Despite the small latitudinal differences between the northernmost and southernmost 
regions of the country, the spatiotemporal distribution of the thermal conditions features 
with considerable diversity and distinct seasonality, determined by the interaction 
between the intra-annual variability of solar insolation, large scale circulation patterns, 
and the land surface relief. The altitudinal zoning and the variety of relief forms on the 
territory of the country contribute to the well-expressed regionalization of temperature 
features. Figure 8 highlights the spatial patterns of the annual average temperature in 
the period 1961-1990. The coldest are mountain areas (–3 °C to 8 °C), followed by the 
high valleys in Western Bulgaria (9-10 °C) and the areas, exposed to intense continental 
invasions in winter, the foothills and hilly regions (10-11 °C). The areas with stronger 
Mediterranean influence are well delineated with temperatures above 12-13 °C.

Figure 9 shows the spatial distribution of temperature normals for January and July – 
the coldest and the warmest month of the year. Outside of mountain regions, where the 
temperature decreases with altitude (0.3-0.4 °C/100 m) down to –10.4 °C on the Musala 
Peak (2925 m), the temperature normal for January is negative in the Danube Plain and 
high valleys of Western Bulgaria (–3 °C to –0.5 °C). In the Thracian Lowland, Black 
Sea coastal zone, and Struma Valley, the temperature is positive (up to 3.6 °C along the 
southern Black Sea coast). 

During the summer, the temperatures to the north and the south of the Balkan 
Mountains are almost equal. July temperature normal ranges in the interval 21-24 °C in 
the Danube Plain and 22-24 °C in the Thracian Lowland. The temperature is around or 
less than 20 °C in the high valleys of Western Bulgaria, about 22 °C on the Black Sea 
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coast, and 24-25 °C along the Struma Valley. In the mountain areas, the temperature 
decreases with altitude (0.6-0.7 °C/100 m) down to 4.6 °C on the Musala Peak.

Fig. 8. Spatial distribution of annual temperature climate normal (1961-1990).

Fig. 9. Spatial distribution of January and July temperature climate normals (1961-1990).

4. SPATIAL INTERPOLATION OF PRECIPITATION NORMALS 
(1961-1990)

The results of exploratory regression analysis and EBKR modeling of precipitation 
standard normals are summarized in Figure 10 and Table 2, where ALT_DEM is the 
altitude derived from the digital surface model; LONG and LAT are longitudinal and 
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latitudinal coordinates; EW_SLOPE, TANGENT, and PROFILE correspond to the 
described in subsection 2.3 topography parameters; ARID_INDEX is the De Martonne 
aridity index. The selected constraints for OLS diagnostics are the same as those used 
in temperature analysis. 

The own explanatory power of the chosen predictors for precipitation modeling 
vary of about 0% for almost all first and secondary topography parameters except 
EW_SLOPE to 57.9% for altitude. Latitude and longitude have a distinct seasonal 
contribution, respectively, in the cold and warm half-year with a maximum of 34% in 
December for latitude, and 21.4% in May for longitude. The aridity index has a stronger 
effect in the warm half-year (up to 69.4% in April) but reaches a maximum value for 
yearly precipitation (73.3%).

Fig. 10. Left – explanatory power of the chosen predictors for precipitation modeling; right – 
comparison between the regression model with the highest AdjR2 value (BEST_PERFORM) and 

this one, based only on 3D coordinate data.

The regression models with the highest AdjR2 values (from 49% for October to 
75.9% for March and 79.9% for yearly precipitation) include three or four predictors, 
which improves the explanatory power with 9.4-34.9% compared to the models 
built only on data for longitude, latitude, and altitude. RMSEs vary from 5.08 mm in 
September to 8.36 mm in May. 

According to the CRPS values after the cross-validation procedure, the smallest 
deviations from the predictive cumulative distribution functions are obtained for 
September and October. The tangential curvature modulates the effect of aridity index in 
the interpolation of precipitation normals for the months with predominant convective 
rainfall. The altitude is substituted by the secondary topographic parameters from May 
to September, but it is implicitly set trough the aridity index. The profile curvature takes 
part in the modeling of yearly precipitation, as well as of monthly precipitation for April 
and May.

The prediction standard error maps represent the standard errors of the predicted 
values at each location. Standard error values should be interpreted while keeping in 
mind the values and range of the input data (Environmental Systems Research Institute, 
2019). This is of particular importance for the accuracy assessment of precipitation 
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modeling results, so a modified standard error (the standard error value divided by the 
respective predicted value) is used hereafter. De Martonne aridity index, as a predictor, 
has a positive effect on the spatial distribution of prediction standard error – between 
44.5 and 91.6% of the modified standard error values, sampled on a 30-arcsec grid, don’t 
exceed 10% for the different months. Moreover, the error is lower in the mountainous 
areas, mainly in Western Bulgaria, in comparison with the regression model built only 
on topography predictors, as seen in Figure 11 by the example for yearly precipitation.

Table 2. Summary information about the structure and cross-validation result of the regression 
models for precipitation with the highest AdjR2

Fig. 11. Modified prediction standard error maps (the standard error values divided by the 
respective predicted values) of annual precipitation: regression model that includes the aridity 

index as a predictor (left); regression model based only on topography predictors (right).

The annual course of precipitation is closely related to the peculiarities of atmospheric 
circulation over the country and sharply differs in the areas under the continental and 
Mediterranean influence. Average annual values of precipitation in the period 1961-
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1990 vary from 400-500 mm in the Black Sea coastal zone, some parts of the Danube 
Plain, and Thracian Lowland to over 1100 mm in the mountainous areas (Figure 12). 
The annual precipitation increases linearly with altitude up to 2000 m in the mountains 
(country averaged 20-40 mm/100 m). 

Fig. 12. Spatial distribution of annual precipitation climate normal (1961-1990).

The 1961-1990 precipitation normals for December, the wettest month of the year in 
the regions with strong Mediterranean influence, as well for June – the wettest month in 
the areas with a continental climate, are shown in Figure 13.

In the regions with continental climate (the Danube Plain, the slopes of the Balkan 
Mountains, Vitosha, the high valleys of Western Bulgaria, and the northern slopes of the 
Rila-Rhodope Massif), the December precipitation normal varies from about 30 to 60 
mm in the lowlands and to 80-120 mm in the mountainous areas. In the southern areas 
with strong Mediterranean influence (the eastern parts of Rhodopes and Strandzha, 
along the river valleys and south Black Sea coastal zone), the precipitation in December 
alters from 60-70 mm to over 130 mm. 
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Fig. 13. Spatial distribution of December and June precipitation climate normals (1961-1990).

In the areas with a continental climate, the precipitation maximum is in June (from 
40-60 mm to over 150 mm). In the southern regions, the summer precipitation is the 
smallest (about 20% of the annual amount). In June, the precipitation varies from 30-50 
mm to over 120 mm in the mountains.

5. CONCLUDING REMARKS

Despite its small territory, Bulgaria has more than 20 different climatic regions, and 
therefore, in the light of the current climate change, it would be very useful to specify 
the climate normals concerning the main meteorological elements, such as temperature 
and precipitation. In this context, the primary objective of the paper was to perform 
spatial interpolation, using advanced tools embedded in ArcGIS 2.4 (and especially, 
the Empirical Bayesian Kriging Regression Prediction), for obtaining accurate maps of 
temperature and precipitation climate normals. 

The generated maps adequately describe the spatial and intra-annual variability of 
temperature and precipitation fields. The regression models with the highest performance 
for temperature modeling (from 93.7% for January to 98% for June) include one or two 
supplementary predictors besides the longitude, latitude, and altitude, which improves 
the explanatory power with 0.2-3.2%. RMSEs vary from 0.46 °C in March to 0.63 °C 
in September. Inclusion of continentality index as a predictor has a positive effect on 
the spatial distribution of prediction standard error, especially in the large mountainous 
areas – between 82 and almost 100% of the values, sampled on a 30-arcsec grid, don’t 
exceed 0.6 °C for the different months. 

The regression models with the highest performance for precipitation modeling (from 
49% for October to 75.9% for March and 79.9% for yearly precipitation) include three 
or four predictors, which improves the explanatory power with 9.4-34.9% compared 
to the models built only on data for longitude, latitude, and altitude. RMSEs vary from 
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5.08 mm in September to 8.36 mm in May. De Martonne aridity index, as a predictor, 
has a positive effect on the spatial distribution of prediction standard error – between 
44.5 and 91.6% of the error values, sampled on a 30-arcsec grid, don’t exceed 10% for 
the different months. In future studies, the number of predictors will be expanded to 
allow more accurate modeling of precipitation fields. 
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