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Abstract. This article focuses on the benefits that Python programming language provides 
in variety of tasks related to model coupling, ranging from functions intended for simple 
calculations, to automation of data downloads from FTP server and file modifications. The 
use of Python is demonstrated on a system composed of the NWP model WRF and the 
Gaussian dispersion model AERMOD. Although, it is impossible to present the scripts in 
their entirety in this paper, an attempt to do so is made, for the sake of demonstration 
of Python’s capabilities. Being easy to learn, flexible, reliable and fast, Python becomes 
a language of choice for thousands of developers, engineers, data analysts and scientists 
around the world.

Keywords: model coupling, python programming language, air pollution forecasting, 
WRF, AERMOD .

1. INTRODUCTION

Python is a widely used general-purpose, high-level programming language. It was 
developed mainly for emphasis on code readability, and its syntax allows programmers 
to express concepts in fewer lines of code. Python was named by its creator after 
the sketch comedy television show Monty Python’s Flying Circus, which first aired 
on the BBC in 1969. The language comes with a large standard library that covers 
areas such as string processing (regular expressions, Unicode, calculating differences 
between files), Internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP, CGI 
programming), software engineering (unit testing, logging, profiling, parsing Python 
code), and operating system interfaces (system calls, filesystems, TCP/IP sockets).

* anton.petrov@meteo.bg
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At the very beginning, the programming language Python was conceived in the late 
1980s, and its implementation was started in December 1989 by Guido van Rossum (van 
Rossum, 2009) at the National Research Institute for Mathematics and Computer Science 
(Centrum Wiskunde & Informatica, CWI) in the Netherlands. Python is a successor 
to ABC programming language, capable of exception handling and interfacing with 
the Amoeba operating system (Tanenbaum, 1991). Van Rossum is Python’s principal 
author, and his continuing central role in deciding the direction of Python is reflected 
in the title given to him by the Python community, “Benevolent Dictator for Life”. 
However, van Rossum stepped down as leader on July 12, 2018.

Here, follows Python’s version releases and developments evolution, according to 
JournalDev (2020):

• The first version ever, was Python 0.9.0. Being a successor of the ABC language, 
Python 0.9.0 also came up with the concept of classes, lists, and strings. More 
importantly, it included lambda, map, filter and reduce, which aligned it heavily 
to functional programming.

• Python 1.2 was the last version developed by the CWI team. Consequently, Van 
Rossum moved to the Corporation for National Research Initiatives (CNRI) 
in Reston, Virginia and worked on the project releasing a number of further 
improvements until Python 1.6. 

• In 2000, Guido van Rossum with other developers formed the BeOpen 
PythonLabs. Noteworthy, the BeOpen team released only one version of the 
language, the Python 2.0. After this, the Python Software Foundation (PSF), a 
non-profit organization, came into the scene and took the responsibility of Python 
Licenses, Fundraising, development, and management of the community as well 
as the PyCon conferences.

• Python 3.0 was released in the month of December 2008. It included various 
changes over Python 2.0. The modification of the print statement was most 
noteworthy. Now it looks like “print()”. With the release of further versions, 
Python is always getting bigger and better. 

As to date, Python 3.8.3 was released, and this is the version used in the scripts 
demonstrated further.

2. WIDELY USED PYTHON PACKAGES WITH SCIENTIFICALLY 
ORIENTED APPLICATIONS

When it comes to processing data files of considerable size, there are many useful 
Python libraries for data science which are designed to be robust and fast. Among the 
most widely used libraries are:

• NumPy. NumPy (the name comes from the abbreviation of the words “Numeric 
Python”) is the fundamental package for scientific computing with Python, adding 
support for large, multidimensional arrays and matrices, along with a large library 
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of high-level mathematical functions to operate on these arrays. NumPy brings 
the computational power of languages like C and Fortran to Python, which is a 
language much easier to learn. Being a fundamental package, NumPy is part of 
many other Python scientific oriented packages. 

• Matplotlib. Matplotlib is a comprehensive library for creating static, animated, 
and interactive visualizations in Python (Hunter, 2007). Some of the features of 
Matplotlib are: development of publication quality plots with just a few lines of 
code; use of interactive figures that can be zoomed, panned, and updated; full 
control of line styles, font properties, and axes properties; export and embed to a 
number of file formats and interactive environments, etc.

• Pandas. Pandas is a fast, powerful, flexible and easy to use open source data 
analysis and manipulation tool. It provides labeled data structures similar to R 
data.frame objects, statistical functions, and much more.

• PyNIO, PyNGL and netCDF4. Both PyNIO and PyNGL are modules developed 
by the community of National Center for Atmospheric Research, USA (NCAR). 

• PyNGL is intended for generating high-quality, 2D visualizations of 
scientific data. It is built on the top of the same resource model used for the 
NCAR command language NCL (NCAR, 2019). 

• PyNIO is used for reading and writing NetCDF, GRIB, HDF and HDF-
EOS files.

• NetCDF module is powerful tool for reading and writing NetCDF files.
Some of the features provided by the packages mentioned above are used for the 

purpose of the exercise described in this article. There are lots of other scientific python 
packages: Astropy (collection of packages designed for use in astronomy), Biopython 
(tools for computational biology and bioinformatics), Bokeh (interactive visualization 
library that targets modern web browsers for presentation), Cubes (light-weight 
framework and set of tools for the development of reporting and analytical applications, 
Online Analytical Processing (OLAP), multidimensional analysis, and browsing of 
aggregated data), DMelt (numeric computation, statistics, analysis of large data volumes 
(Big Data), and scientific visualization), and many more.

A relatively new Python promising collection of tools – MetPy – is emerging as an 
attractive package intended for reading, visualizing, and performing calculations with 
weather data (https://unidata.github.io/MetPy/latest/index.html). As with many other 
tools, MetPy is binded with the installation of other Python packages, such as NumPy, 
Matplotlib, Scipy, Pandas and Xarray.

3. WORKFLOW OF THE NUMERICAL WEATHER PREDICTION – 
ATMOSPHERIC DISPERSION MODEL SYSTEM

The system proposed here is comprised of the numerical weather prediction (NWP) 
model WRF v.4.2 (Skamarock et al., 2019), and the atmospheric dispersion model 
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(ADM) AERMOD v.19191 (Cimorelli et al., 2005). The main purpose of the system is 
generating short term (72 hour) air pollution forecasts for Sofia, Bulgaria.

In order for the system to be initialized, some preliminary model settings have to be 
made. For the prognostic model, these refer mainly to the setup of domain configuration 
and the physics modules used. For the dispersion model, these settings are mostly 
related to terrain setup, buildings (if applicable), domain configuration and air pollution 
sources. All the tasks mentioned above, are “one time problems” in sense that after their 
initial setup, they do not involve any further modifications, unless indispensable. Figure 
1 shows the domain configuration generated with the help of the WRF pre-processing 
system (WPS).

Fig. 1. Configuration of WRF modelling domains and nested subdomains: d01 – Europe, d02 – 
Balkan Peninsula, d03 – Sofia – region, and d04 – Sofia – city. 

The master domain (d01) covers the territories mainly of Central, Southern and 
South-Eastern Europe, the shores of North Africa, Asia Minor Peninsula, and has a grid 
resolution of 20 x 20 km. The Balkan Peninsula (d02), Sofia – region (d03) and Sofia – 
city (d04) subdomains have grid resolutions of 5 x 5 km, 1 x 1 km, and 0.25 x 0.25 km 
respectively.

On Figure 2, a simple workflow schematics of the WRF-AERMOD system is shown. 
Almost all processes are managed by Python scripts, except for the nioenv.sh bash 
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script, which is necessary for loading of the PyNIO environment which is responsible 
for reading of the information in the downloaded from GFS GRIB2 data files.

Fig. 2. WRF-AERMOD air pollution forecasting system workflow schematics

The first step in the workflow is downloading of the necessary prognostic data files 
from the Global Forecasting System (GFS). This is achieved via following Python code 
(the ftp_download.py script on Figure 2):

1  import os
2  from datetime import datetime, date, time, timezone
3  import time
4  import shutil
5  import urllib.request as request
6  import requests
7  from contextlib import closing
8
9  dt = datetime.today()
10 tt = dt.timetuple()
11
12 # Composing the url name with a varying part for the downloadable files
13 ftpdir = ‘ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/’
14 todaydir = ‘gfs.’ + str(tt[0]) + str(tt[1]).zfill(2) + str(tt[2]).zfill(2)
15 + ‘/00/’
16 files = [‘gfs.t00z.pgrb2.0p50.f’ + str(k).zfill(3) for k in range(6,79,3)]
17 # Valid for this device! Needs to be changed on another computer
18 destination_dir = ‘/home/user/wrf/Build_WRF/DATA/’
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19
20 # Empty the DATA directory from outdated files
21 filelist = os.listdir(destination_dir)
22 print(filelist)
23 if filelist != []:
24     for f in filelist:
25         os.remove(destination_dir + f )
26
27 # Get the beginning time of the download
28 start = time.time()
29
30 for fi in files:
31     url = ftpdir + todaydir + fi
32     destination_path = destination_dir + fi
33    
34     # Download the data from the ftp...
35     with closing(request.urlopen(url)) as r:
36         # ...and recording it to the destination folder 
37         # by taking the name of the ‘fi’ variable 
38         with open(destination_path, ‘wb’) as f:
39             sub_start = time.time()
40             print(f’Downloading {fi} from {ftpdir}{todaydir}...’)
41             shutil.copyfileobj(r, f )
42             print(f’Downloaded for {round(time.time() - sub_start, 1)} s’)
43            
44 print(f’Total downloading time: {round(time.time() - start, 1)} s’)

As it can be seen, with just about 40 lines of code, all the necessary information 
can be automatically downloaded from the ftp server, any obsolete data – deleted, and 
the processes can be monitored during execution by showing the time necessary for 
downloading. 

4. VARIABLES AND PARAMETERS NECESSARY FOR THE 
METEOROLOGICAL  INPUT OF THE ADM

In order for the inter-model coupling to be attained in the best possible manner, some 
conditions have to be satisfied. The most important condition is the availability of 
sufficient exhaustiveness of the meteorological output data from the NWP, that has to 
meet the demands of the atmospheric dispersion model. If that condition is not fully 
satisfied, there has to be enough meteorological information to at least run the ADM, 
or there has to be an option, such that the variables needed could be derived from the 
already available ones. In this regard, AERMOD’s meteorological data demands can 
be as minimal as possible, but that would be at the cost of poor performance and more 
inaccurate results.

AERMOD assimilates the meteorological data through two specific input files. 
The first must contain surface observational data and calculated (by the preprocessor 
AERMET, or by the NWP model, or by means of a script as in this particular exercise) 
variables, which describe the meteorological conditions that influence the nature of air 
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pollutants dispersion – friction velocity, convective velocity scale , Monin-Obukhov 
length L. The second file contains hourly data with wind and temperature vertical 
profiles.

Some of the variables presented in the WRF prognostic output files (from here 
on, referenced as wrfout* files) were taken as they are, but some needed preliminary 
processing. A list of these variables follow with some comments.

• Wind speed, Uspd (m s-1).
In the wrfout* files there are x, y, z components of wind available (respectively u, v, 

w). The wind speed (Uspd) is calculated as:

 (1)

• Wind direction (degrees).

AERMOD accepts meteorological wind direction as an input, i.e. the direction from 
which the wind is blowing. For the calculation, the zonal velocity (u) and the meridional 
velocity (v) wind components are used. Since 360 degree continuous scale is in use, 
some additional conditions have to be satisfied in order to calculate the wind direction. 
The following example function written in Python shows a solution to this problem:

1 import numpy as np
2
3 def wind_dir (u, v):
4    “””Calculates the METEOROLOGICAL wind direction, given the u and v 
5    components of wind. Not to be confused with the WIND VECTOR AZIMUTH!”””
6    d = 90 - np.arctan2(-v, -u) * 180/np.pi
7    if d < 0:
8        return d + 360
9    return d

As seen on line 6 in the script above, the first step performed is coordinate system 
rotation in 90º counterclockwise direction, so that the 0º (360º) direction can coincide 
with the direction of the y-axis (northward). Since in the interval [270º, 360º] the 
expression on line 6 returns values between -90º and 0º, an additional condition is 
applied, so that if the variable d < 0º, a value of d + 360º should be returned.

• Elevation of a WRF level over earth’s surface, z (m).

The heights of the different layers over the surface (in this case the layers are 32) 
with the calculated from the NWP model variables, are expressed by WRF either by 
the so called eta-levels (in the range between 0 and 1), or in units of geopotential (m2 
s-2). However, the heights attached to each level in the vertical profiles of wind and 
temperature assimilated by AERMOD should be presented in meters. The conversion 
of geopotential to elevation above the ground is done by using the following relation:
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 (2)

Here, z is the height of interest (m),  and  are the geopotentials and their 

perturbations  and  (m2 s-2), on levels k and k+1 accordingly, g = 9.81 m s-2, 
and h is terrain elevation (m). Expressed as a Python code, the expression above looks 
like this:

1  from netCDF4 import Dataset
2  import numpy as np
3
4  ncfile = ‘wrfout_d02_2020-11-06_01:00:00’
5  f = Dataset(ncfile, ‘r’)
6
7  z = (((f.variables[‘PHB’][0, :-1, 83, 101] + 
8         f.variables[‘PHB’][0, 1:, 83, 101])/2 +
9        (f.variables[‘PH’][0, :-1, 83, 101] + 
10        f.variables[‘PH’][0, 1:, 83, 101])/2)/9.81 -
11        f.variables[‘HGT’][0, 83, 101])
12 z = np.array([int(z[i]) for i in range(len(z))])

• Atmospheric pressure, p (hPa, mb).

As similar as the geopotential, the pressure is presented by WRF output in two parts 
– basic and perturbational. For each of the 32 calculated levels the following formula 
is valid:

, (3)

where p is the pressure at level k, pB is the base pressure and pP is the pressure 
perturbation.

• Temperature, T (K, ºC).

Variables available for “direct use” from the wrfout* files (without any additional 
calculations) are the temperature (T2) at 2 m height and the potential temperature (θ2) 
at 2 m height. Vertical profiles are available for θ only. The vertical profile of T can be 
calculated using:

  (4)

Here, R/cp = 0.286 is the Poisson constant, where R ≈ 8.3145 JK-1mol-1 is the 
universal gas constant, and cp ≈ 29.14 JK-1mol-1 is the specific heat capacity of air at 
constant pressure p0 = 1000 hPa. 

After some rearrangements and taking under consideration some specifics in the way 
the potential temperature is presented by WRF, for T at any given level k we have:
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 (5)

where p(k) is the pressure at level k, and θ(k) + 300 is the total potential temperature at 
level k,  with base part of value 300 K and perturbation part θ.

• Friction velocity (m s-1).

As described in “AERMOD: Description of model formulation” (AERMOD, 2004), 
the calculation of the friction velocity is not a trivial task, and is done by iteration 
procedures until convergence is reached. However, u* is readily available in the wrfout* 
files.

• Sensible (H) and latent (λE) heat fluxes (W m-2).

The values of H and λE are required for the calculation of the Bowen ratio

 (6)

which determines what part of the heat is transferred from earth’s surface to the 
atmosphere by means of direct heating (diffusive and/or turbulent), and what part – by 
indirect (latent, hidden) heating (spent for evaporation and/or transpiration and later – 
when meeting certain conditions – released through condensation). Thus, B is also an 
indicator of the type of the underlying surface. According to AERMOD’s formulation, 
H can be calculated as:

, (7)

where Rn is the net radiation (W m-2).
The sensible heat flux plays great role in determining the Monin-Obukhov’s length:

 (8)

L is one of the recommended for use variables by AERMOD. H, λE andare readily 
available in WRF prognostic output files, T can be easily derived as shown in (5) and  
k = 0.4 is the von Kármán constant. However, the density of the air ρ has to be calculated 
separately. This problem can be solved by using the formula:

, (9)

Here, Rs = 287.058 Jkg-1K-1 is the specific gas constant for dry air and w(k) is the water 
mixing ratio in the kth vertical layer (kg kg-1). 
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• Convective velocity scale(m s-1).

Unlikeis not available in the wrfout* files. Therefore, it has to be calculated using the 
relation employed by the meteorological pre-processor AERMET:

 
(10)

where cp = 0.001005 Jkg-1K-1 is the specific heat capacity at constant pressure, and zic 
is the height of the convective boundary layer (CBL).

• Cloud cover (tenths).

The variable named “CLDFRA” in the WRF output contains information about the 
cloudiness in each cell on each level in the calculation grid. This quantity is presented 
by a coefficient in the range between 0 and 1, where 1 corresponds to fully clouded cell, 
and 0 – to absence of clouds. Therefore, in order to be determined the cloud cover over 
an observational point situated on the ground, the total sky area visible from that point 
has to be considered. However, the choice of an appropriate area size is what makes 
this task difficult. In many cases the cloud cover occupies not one, but several levels, so 
the distance between the observer and the low level clouds situated at a point over the 
horizon, is much shorter than the distance to the high level clouds at the same point. In 
this exercise’s particular case, a simple algorithm for determining the total cloud cover 
is applied:

1 cells_all_lvl = f.variables[‘CLDFRA’][0, :, 77:88, 87:112].flatten()
2 cells_one_lvl = f.variables[‘CLDFRA’][0, 0, 77:88, 87:112].flatten()
3    
4 for i in range(32):
5     for j in range(len(cells_one_lvl)):
6         if cells_one_lvl[j] < cells_all_lvl[i * j]:
7             cells_one_lvl[j] = cells_all_lvl[i * j]
8                

9 clfrac = int((np.sum(cells_one_lvl) / len(cells_one_lvl)) * 10) 

On the first line of the script, the values of all grid cells on all the 32 levels covering 
Sofia valley and the surrounding mountains are assigned to the variable cells_all_lvl. The 
values from the lowest level are assigned to cells_one_lvl. In the following loop (lines 4 
to 7) the values of the bottom cells are compared to the ones lying over them. If values 
greater than 0 exist in one or several cells in a vertical column, the greatest of them is 
assigned to the cell at the bottom level. On line 9, the sum of all updated bottom level 
values is divided to the number of cells in that level, and then multiplied by 10 to get 
the cloud cover in tenths. 

An issue with the accuracy of the proposed algorithm could be the fact, that the 
calculations are made for cells arranged in vertical columns. This means, that if we use 
the point of view of each of the bottom level cells, looking in vertical direction only 
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(Fig. 3, left), in most of the cases, the calculated cloud cover would be different from 
that received by the observer’s point of view (Fig. 3, right).

Fig. 3. An example of cloud cover calculation. Left: using bottom cells’ points of view; right: 
using the observer’s (red dot) point of view.

On the other hand, AERMOD accepts meteorological data from just one point, 
which is deemed representative for the entire modelling domain. In this particular case, 
an averaged value of cloud cover n over the whole territory of the Sofia valley (as shown 
in fig. 3, left) is used, which guarantees representativeness for any point of choice, at 
least in regard to that meteorological element.

5. RESULTS

The forecast of PM10 pollution distribution by the WRF-AERMOD system, on the 
territory of Sofia municipality, for the 11th, 12th, and 13th of December 2020 is shown 
on Figure 4. The domain area covered by AERMOD is 950 km2 (38 x 25 km). The 
affected areas in square kilometers, for different threshold values of PM10, as well as the 
percentages of these areas from the entire domain area are presented on Table 1.

Table 1. WRF-AERMOD system forecast for PM10 pollution affected areas (km2, %) on the 
territory of Sofia municipality, for values over 100, 75, 50, 25, 10 and 5 μgm-1, on the 11th, 12th, 
and 13th of December 2020. The values in brackets show the part of affected areas (in percent) 
from the whole domain area. CPM10 denotes the PM10 concentration.

Affected area (km2), (%)
CPM10     ( μgm-1) 11.12.2020 12.12.2020 13.12.2020

 > 100 0.25 (0.03%) 0.0 (0.00%) 0.0 (0.00%)
> 75 1.25 (0.13%) 0.25 (0.03%) 0.0 (0.00%)
> 50 6.5 (0.68%) 4.5 (0.47%) 0.25 (0.03%)
> 25 32.0 (3.37%) 22.5 (2.37%) 9.25 (0.97%)
> 10 140.75 (14.82%) 110.5 (11.63%) 55.75 (5.87%)
> 5 277.75 (29.24%) 205.75 (21.66%) 149.0 (15.68%)
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Fig. 4 WRF-AERMOD PM10 pollution forecast for 11and 12.12.2020 (top), and 13.12.2020 
(bottom).   

As seen on Table 1 and in Figure 4, the highest forecasted PM10 concentrations 
are observed on 11.12.2020, and are gradually decreasing in the next two days. Since 
the emissions from the sources were set to be a constant value in time, the change in 
meteorological conditions dictated by WRF remains the only reason for the change in 
the concentrations of the pollutant.

Again, the Python programming language is used for the preparation of the maps in 
Figure 4. An example code with clarifying comments is presented below:

1   from pylab import *
2   import matplotlib.pyplot as plt
3   import matplotlib.colors as col
4   import numpy as np
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5   import os
6   import scipy.ndimage
7   from dataprocessor import DataProcessor
8   from hex2dec_norm import rgba_nor
9
10  # List the AERMOD output in the directory
11  path = ‘output/24hr_averages/’
12  filelist = [f for f in os.listdir(path) if f.endswith(‘.dat’)]
13  filelist.sort()
14
15  # pollution levels to be plotted:
16  levels = [0.05, 0.2, 0.5, 2, 5, 10, 20, 50, 100] 
17
18  for i in range(len(filelist)):
19      # Reshaping data for contour plot:
20      grid = DataProcessor(path + filelist[i]).contour()
21    
22      # Interpolating/smoothing the grid data:
23      grid = scipy.ndimage.zoom(grid, 
24                                order = 1, 
25                                zoom = [1.1, 1.1], 
26                                mode=’constant’, 
27                                cval = 0.12)
28    
29      # Assign labels to x and y axis:    
30      xlabel(u’x(km)    east -->’, fontsize=12, weight=600)
31      ylabel(u’y(km)    north -->’, fontsize=12, weight=600)    
32    
33      # An easy way to adjust the figure to the required domain size:
34      plt.xlim(0,38000)    
35      plt.ylim(0,25000)
36    
37      # Background map of Sofia:
38      im = plt.imread(‘sofia_base.jpg’)
39
40      # Background adjustment: 
41      implot = plt.imshow(im, 
42                          extent=(-3100,38400,-1400,25200), 
43                          alpha=1.0, 
44                          label=’’)
45    
46      # Plot the contour lines:        
47      CP = plt.contour(grid, 
48                       levels, 
49                       extent=(0,38000,0,25000), 
50                       colors=’red’, 
51                       linewidths=0.1)
    
52      # Fill the contours
53      CP1 = plt.contourf(grid, 
54                         levels, 
55                         extent=(0,38000,0,25000),
56                         #RGBA colors: (Red,Green,Blue,Transparency) 
57                         colors=[(rgba_norm(‘33ff77’,1)),
58                                 (rgba_norm(‘66ff00’,1)),
59                                 (rgba_norm(‘ccff00’,1)),
60                                 (rgba_norm(‘ffff00’,1)),
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61                                 (rgba_norm(‘ffaa00’,1)), 
62                                 (rgba_norm(‘ff0000’,1)), 
63                                 (rgba_norm(‘ff00aa’,1)),
64                                 (rgba_norm(‘9900ff’,1))], alpha=0.3)    
65   
66      # Set x and y axis to km instead of meters:
67      plt.xticks(np.arange(0, 38000, 5000), np.arange(0, 38, 5))
68      plt.yticks(np.arange(0, 26000, 5000), np.arange(0, 26, 5))
69   
70      # Plot a grid on the map:
71      plt.grid(which=’both’, 
72               color=’#aa33aa’, 
73               linestyle=’-’, 
74               linewidth = 0.2)
75    
76      # Plot the colorbar:
77      cbar = plt.colorbar(orientation=’horizontal’,
78                          fraction=0.03,
79                          pad=0.12,
80                          shrink=0.8,
81                          ticks=levels)
82    
83      # Set colorbar labels and ticks:
84      cbar.set_label(u’$PM_{10}$ concentration $[\mu g m^{-3}]$’)                  
85      cbar.ax.set_xticklabels([str(levels[k]) for k\ 
86                               in range(len(levels))]) 
87
88      # Set the font size of the colorbar ticklabels
89      for t in cbar.ax.get_xticklabels(): 
90          t.set_fontsize(9)
91    
92      # Plot the roadmap on top of the other layers:                
93      roads = plt.imread(‘sofia_roads.png’)
94      roadplot = plt.imshow(roads, 
95                            extent=(-100,37700,0,23700), 
96                            alpha=1.0, 
97                            label=’’,  
98                            zorder = 0)
99    
100     # Set text decorations:
101     timetext = filelist[i][0:2] + ‘.’ +\ 
102                filelist[i][3:5] + ‘.’ +\ 
103                filelist[i][6:10]   
104     text(7500,27500, u’Air pollution in Sofia - $PM_{10}$\
105          $[\mu g m^{-3}]$’, fontsize=14)
106     text(1000,25500, timetext, color=’b’)
107     text(27000, 25500, u’receptor level = 2m’, color=’r’)    
108        
109     # Get the current figure, set its size, and save it to a file:
110     figure = plt.gcf() 
111     figure.set_size_inches(7, 6)        
112     figure.savefig(path+’images/’+filelist[i][:-4]+’.png’, dpi=192)
113    
114     # Clears current figure, otherwise it plots over the next one: 
115     plt.clf() 
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6. CONCLUDING REMARKS

Within the last few years, Python has grown to new heights and today, it is truly one of 
the most utilized program languages available. As to date, it is tying with Java as the 
second most popular programming language behind JavaScript. Python has been rising 
across several programming language popularity indexes, including Tiobe and IEEE 
Spectrum. The Python programming language owes its attractiveness to the features it 
possesses, and they are:

• Python is simple to execute and easy to learn;
• Availability of quality libraries, which boost Python’s development capabilities;
• Efficiency, speed, reliability, and flexibility;
• Suitable for software automation, which is one of the main reasons Python to be 

chosen as programming language for this exercise;
• It has support from large experienced community and by big sponsors.
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